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LE’ITER TO THE EDITOR 

The three-spin Ising model as an eight-vertex model 
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Research School of Physical Sciences, The Australian National University, Canberra, ACT‘, 
2600 Australia 

Received 10 August 1976 

Abstrret. The three-spin king model is related to a special case of the eight-vertex model 
by a spin transformation. It follows that the models have the same free energy, magnetiza- 
tion and polarization. 

The solution of the zero-field eight-vertex model (Baxter 1971, 1972) includes as 
special cases most of the known exact solutions of two-dimensional lattice models. One 
model not included is the three-spin king model (or triplet model) which can be defined 
as having the energy given by (Wood and Griffiths 1972) 

The sites (i, j )  are on a square lattice and the uij are king spins taking values f 1. The 
free energy of this model has also been obtained exactly (Baxter and Wu 1974) and the 
model does not at first appear to be equivalent to any of the eight-vertex models. There 
are however a number of points of similarity between the solutions. Both can be 
naturally described in terms of elliptic functions which lead to expressions involving 
infinite sums and products as discussed by Baxter et a1 (1975). 

In particular, for temperatures T less than the critical temperature T,, if p is defined 
by 

then the triplet model free energy is given by 

or equivalently (expanding the logarithms and summing over n) 

It has been conjectured that the magnetization and polarization are given by 

(5 )  

L149 



L150 Letter to the Editor 

and 

These expressions are remarkably similar to those of the eight-vertex model. Compari- 
son of (5) with equation (15) of Barber and Baxter (1973), (6) with equation (18) of 
Baxter and Kelland (1974) and (4) with equation (D37) of Baxter (1972) shows that the 
expressions (4), (9, (6) are those of an eight-vertex model with 

(7) 
4 = p 4  (8) 

3/2 x = p  

The elliptic function parameters n, q, t are defined by equation (D8) of Baxter (1972). 
We find that these parameters correspond to an eight-vertex model with energy 

E =C E{;'= -E J ~ i p i + 1 j + 1 ( 1  + a i j + l ~ i + l j ) .  (10) 
ij ij 

This is a square lattice model with a two-spin interaction only along one diagonal 
direction. The interaction energy J is related to the parameter p by equation (2), i.e. it 
has the same value as in (1). 

One can also verify that the two models satisfy the same duality relation, and so have 
the same free energy for T > T,. 

The agreement between the solutions suggests the existence of some kind of 
transformation of the three-spin model into an eight-vertex model. For the case of a 
rectangular lattice with all boundary spins fixed at +1 we are able to build up one such 
transformation by the following iterative procedure. 

The transformation starts from an invariant line such as the heavy diagonal zig-zag 
line of figure 1. From this line we build up a central band of transformed squares so that 
at each stage of the interaction the energy, as a function of the transformed spins, is 
given by 

(1 1) ( l )  (8)  (') (77 E = C  Eij +c E ,  
ij ij 

where I;(1) is over all squares in the central band and 8'2' is over all other squares. To 
add an additional line of transformed squares we perform the following transformation 
a to a*. 

(i) All spins in and below the central band are fixed, so that a$ = aii. 
(ii) The outermost spins on the upper boundary of the central band are all on one of 

the three triangular sublattices described by Baxter and Wu (1974). This sublattice LZl 
is shown by open circles in figure 1. The spins on these sites are left unchanged 
(a$ = aij) but they serve to define the transformation of those on the other sites. 

(iii) Each other spin aij above the central band has three neighbours a,, ay, a, on 
the invariant sublattice z1 of (ii). The transformation of aij is 

a$ = aij x sgn(a, +ay +az). (12) 
This transformation can be considered to apply to the boundary sites if the lattice is 
treated as though it were completely surrounded by further sites fixed at +l.  The 
consequence of this is that the true fixed boundary sites are always left unchanged at + 1. 
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Figare 1. Transformation of the three-spin model into an eight-vertex model. The central 
band shaded has its energy given by the eight-vertex model expression and contains the 
invariant starting line (the heavy diagonal line). Outside the central band the energy is a 
three-spin interaction summed over triangles as shown in the lower left corner. The upper 
right comer shows the combination of pairs of triangles into dice lattice faces and also shows 
the three-sublattice division. The invariant sublattice 9, is shown by open circles. The 
fixed boundary spins are denoted +. 

Obviously the transformation will change the energy associated with many of the 
elementary triangles but if the triangles are combined in pairs to form the faces of a dice 
lattice as shown in figure 1 then it is found that the transformation leaves unchanged the 
energy of any face not having an edge lying on the boundary of the central band. 

To see this, consider a quadrilateral as shown in figure 2. In terms of the original 
variables the energy is given by E = -J(a,  + a c ) o p d .  Since a and c are on the invariant 
sublattice we have (+:=a,, a,*=ac. There are three cases to consider which are 
outlined below. 

(i) a, = a, = + 1. Both b and d have at least two positive neighbour spins in a,, so 
the sign in (12) is positive and a$ = a b ,  U$ = a d  and E = -J (az  +a,*)a$a$. 

(ii) a, = a, = -1. Thus a$ = -ab ,  a$ = - a d  and E = -J(a: + a,*)a$a$. 
(iii) a, =-ac, E = 0 .  Now a$ and a3 depend on spins outside the face abcd. 

However, as for cases (i) and (ii), it remains true that (a, + ac)abad = (a: + az)ata3 
since both sides are zero independently of a$, a$. 

An exception to this argument occurs at the boundaries where isolated triangles can 
occur due to the misfit between the dice lattice and the square lattice. These triangles all 

Figure 2. A typical dice lattice face showing the indexing used in investigating the energy 
transformation. 
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have two fixed boundary sites and one site on the invariant sublattice so that the energy 
of any such triangle is left unchanged. 

For squares sharing an edge with the central band, a d  (or a b  for squares below the 
central band) is unchanged: a$ = a d .  Again af = a,, a,* = a, and the same three cases 
must be considered. 

We find that E = -J(u, +a,)abud = -Ja$u:(l  +afa,*) for each case: 
(i) a,=a,=+l,  a t = a b  a n d E = - 2 J a b a d = - 2 J a d a $ ;  
(ii) U= = -a, and E = 0 independently of a:; 

(Ill) U, = Uc = -1, U$ = - a b  and E = 2JUbUd = -~Ju$u$. 
Thus the transformation changes the interaction Hamiltonian for these squares 

from that of the three-spin model (equation ( 1 ) )  to that of the eight-vertex model 
(equation (10)). Hence one diagonal line of squares is added to the central band of 
figure 1 .  

The transformation can be applied equally well to the region below the central band 
and after sufficient iterations any finite lattice with rectangular boundaries and fixed 
boundary sites (as in figure 1)  can be converted from a three-spin model to an 
eight-vertex model. The equivalence of the free energies then follows by taking the 
large size limit. The magnetization and polarization can be defined by M = ( a , ) ,  
P = (uj,ojJ+l) for sites sufficiently far from the boundary. Sites on the invariant starting 
line can be used to define these order parameters which must therefore be the same for 
each model. There will be a large class of diagonal correlations (namely those only 
involving spins on the invariant line) that are the same for both models. 

Since the expressions for the magnetization and polarization were conjectured on 
different grounds for each model (Barber and Baxter 1973, Baxter and Kelland 1974, 
Baxter et a1 1975) the equivalence derived here is further evidence in support of these 
conjectures. 

... 
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